AH Chemistry – Unit 1

Chemical Equilibrium

Introduction

This topic explores various aspects of *Reversible Reactions*, leading to an appreciation of the importance of *Equilibria* in Chemistry.

Starting with a frozen sample containing the dimer, $N_2O_{4(g)}$

As the sample warms up the only reaction will be:

When enough NO_2 has formed, it can react to form N_2O_4 .

 $2\mathrm{NO}_{2(g)} \Box \mathrm{N}_{2}\mathrm{O}_{4(g)}$

At this stage the forward reaction will still be faster:

$$N_2O_4 \longrightarrow 2NO_2$$

The concentration of NO_2 will continue to increase while the concentration of N_2O_4 will decrease.

At normal temperatures, the reverse reaction is more favoured, but the high concentration of N_2O_4 means:

$$N_2O_4 \longrightarrow 2NO_2$$

Eventually, however, the rising concentration of NO_2 means that the reverse reaction will become as fast as the forward reaction:

$$N_2O_4 \implies 2NO_2$$

From now on the concentrations of N_2O_4 and NO_2 will not change - the reaction will have reached *equilibrium*.

Equilibrium Constant 1 Initial and Equilibrium Concentrations for the N₂O₄ - NO₂ System at 100° C

Initial		Equilibrium		Ratio	
[N ₂ O ₄]	[NO ₂]	[N ₂ O ₄]	[NO ₂]	$[NO_2]^2/[N_2O_4]$	
0.1000	0.0000	0.0491	0.1018	0.211	
0.0000	0.1000	0.0185	0.0627	0.212	
0.0500	0.0500	0.0332	0.0837	0.211	
0.0750	0.0250	0.0411	0.0930	0.210	

Equilibrium Constant 2

No matter the starting composition of reactants and products, the same ratio of concentrations is achieved at equilibrium.

For a general reaction

$a\mathbf{A} + b\mathbf{B} \implies p\mathbf{P} + q\mathbf{Q}$

the equilibrium constant expression is

$$K_{c} = \frac{[\text{Products}]}{[\text{Reactants}]} = \frac{[\mathbf{P}]^{p}[\mathbf{Q}]^{q}}{[\mathbf{A}]^{q}[\mathbf{B}]^{b}}$$

where K_c is the equilibrium constant.

The equilibrium constant provides information about which of the reactions is *most favoured* at that particular temperature

Equilibrium Constant 3

K small $N_{2(g)} + O_{2(g)} = 2 NO_{(g)} K = 1 \times 10^{-30}$

You would predict that under most conditions there would be very little NO produced.

Equilibrium position likely to lie *well over to left*

You would predict that under most conditions there would be very little CO left.

Equilibrium position likely to lie *well over to right*

Equilibrium Constant 5

Intermediate K $2BrCl_{(g)} \implies Br_{2(g)} + Cl_{2(g)}$ K = 5

You would predict that under most conditions there would be reasonable amounts of BrCl, Br_2 and Cl_2 .

Equilibrium position likely to lie somewhere *in the middle*

Equilibrium Position and K

$$2CrO_4^{2-}(aq) + 2H^+ \implies Cr_2O_7^{2-}(aq) + H_2O_{(1)}$$

Visually, we would see the mixture change from yellow to orange.

We would say that the equilibrium has shifted to the right.

We might talk in terms of

[Products] increasing [Reactants] decreasing

Does this mean that K has increased, since

 $K_{\mathcal{C}} = \frac{[\text{Products}]}{[\text{Reactants}]}$

Equilibrium Position and K

$$2 \operatorname{CrO}_4^{2-}(aq) + 2 \operatorname{H}^+ \longrightarrow \operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + \operatorname{H}_2 \operatorname{O}_{(l)}$$

In fact, K is not just about CrO_4^{2-} and $Cr_2O_7^{2-}$:

$$\boldsymbol{K_{c}} = \frac{[Cr_{2}O_{7}^{2-}][H_{2}O]}{[CrO_{4}^{2-}]^{2}[H^{+}]^{2}}$$

[H₂O] will be so large that any change will be negligible [H⁺] will have increased

Overall the ratio of products to reactants will *remain the same*.

K_c is *a constant* that is unaffected by changes in concentration.

$$\boldsymbol{K_{c}} = \frac{[Cr_{2}O_{7}^{2-}][H_{2}O]}{[CrO_{4}^{2-}]^{2}[H^{+}]^{2}}$$

Effect of Temperature 1 $N_2O_4 \implies 2NO_2$

Low temperature favours the *exothermic* reaction:

$$N_2O_4 - 2NO_2$$

The *equilibrium position* will shift to the left.

$$\begin{bmatrix} N_2O_4 & - & 2NO_2 \\ [Reactants] & [Products] \\ increases & decreases \end{bmatrix} \quad K_c = \frac{[Products]}{[Reactants]}$$

As temperature drops the value of K will decrease. K is *temperature dependent*.

High temperature favours the *endothermic* reaction:

 $N_2O_4 \longrightarrow 2NO_2$

The *equilibrium position* will shift to the right.

As temperature drops the value of K will increase. K is *temperature dependent*.

Effect Of a Catalyst

A catalyst lowers the activation energy barrier for a reaction.

- A catalyst speeds up a reaction.
- A catalyst lowers the activation energy for the forward and the backward reaction equally.
- Therefore, a catalyst will decrease the time taken to reach equilibrium.
- A catalyst does not effect the composition of the equilibrium mixture.

Effective Concentrations

In some circumstances chemicals don't 'punch their weight'

e.g. 0.1 M Na Cl has a conductivity of 80.
0.2 M NaCl has twice as many ions but its conductivity is 120 not 160

At the higher concentration, there are more and stronger interactions between ions and their conductivity is reduced as a result.

The 0.2 M Na Cl is behaving as if it has an *effective concentration* of 0.15 M.

Though beyond the scope of the Advanced Higher Course, we need The concept of effective concentration to explain units of K.

Units for Equilibrium Constants

Strictly speaking K is based on *effective concentrations* present in the equilibrium mixture rather than *actual concentrations*.

A value known as the *activity*, *a*, is used, which is a measure of the effective concentration relative to a standard concentration.

$$a(P) = \frac{\text{effective [P]}}{\text{standard [P]}}$$
 $K_c = \frac{a(P)^q}{a(R)^s}$

Units for Equilibrium Constant. $a(P) = \frac{\text{effective [P]}}{\text{standard [P]}}$ $K_c = \frac{a(P)^q}{a(R)^s}$

The significant point is that activities involve dividing a concentration in mol l^{-1} by another concentration in mol l^{-1} .

Activities, *a*, are *without units* and so, therefore, is K.

Standard concentration is 1 mol l^{-1} and at low concentrations, effective concentration is very close to actual concentration.

This allows us to use actual concentrations to calculate K - but assigning units to K is pointless (and wrong!).

Gas Equilibria

Though we could use moles l^{-1} to describe the 'concentration' of a gas, it's not really satisfactory.

Physicists will know that (for an ideal gas):

PV = n R T

where, P = pressure

- V = volume
- n = moles of gas
- R = a constant
- T = temperature

Gas Equilibria PV = n R T

From this equation we can see that:

P is proportional to $n \ / \ V$

Therefore, we can use pressures instead of concentrations in our equilibrium expression.

But there is only one value for pressure, even if there is a mixture of gases.

Partial Pressures

However, pressure depends on a *number* of gas particles pushing against a surface.

The pressure of a mixture of gases is due to the *total number* of particles present.

The pressure exerted by a particular group of particles is called their *partial pressure* and is:

Partial pressure = (particles in group/ particles in total) x P

Partial pressures, or even moles, of gases can be used in to derive equilibrium constants.

Special // - Solubility Products

The dissolving of a substance can be considered a reversible reaction:

$$Ba^{2+}SO_{4}^{2-}{}_{(s)} + aq \implies Ba^{2+}{}_{(aq)} + SO_{4}^{2-}{}_{(aq)}$$
$$K = \frac{[Ba^{2+}][SO_{4}^{2-}]}{[Ba^{2+}SO_{4}^{2-}][aq]} \qquad [Ba^{2+}SO_{4}^{2-}] \text{ has activity of 0}$$
$$[aq] \text{ remains constant}$$
$$K_{sp} = [Ba^{2+}][SO_{4}^{2-}]$$

This gives a much better measure of solubility.

Special // - Partition Coefficient

When a solute is soluble in two different immiscible solvents, the following equilibrium is set up:

$K = \frac{[\text{ solute }] \text{ in solvent A}}{[\text{ solute }] \text{ in solvent B}}$

Applications of partition coefficients include:

solvent extraction

paper chromatography

gas chromatography

Acid Base Equilibria

$H_2O(l) + H_2O(l) = H_3O^+(aq) + OH^-(aq)$

This topic explores various aspects of *Equilibria involving ions*, leading to a greater understanding of *Weak Acids* and *Weak Bases*.

pH & pH Scale

		рН	[H+]	[OH-]	рОН
		- 14	1 × 10 ⁻¹⁴	1 × 10 ⁻⁰	0.
More acidic More basic	NaOH, 0.1 <i>M</i>	- 13	1 × 10 ⁻¹³	1 × 10 ⁻¹	1
	Household bleach Household ammonia	- 12	1 × 10 ⁻¹²	1 × 10 ⁻²	2
		- 11	1 × 10 ⁻¹¹	1 × 10 ⁻³	3
	Lime water Milk of magnesia	- 10	1 × 10 ⁻¹⁰	1 × 10 ⁻⁴	4
	Borax	- 9	1 × 10 ⁻⁹	1 × 10 ⁻⁵	5
	Baking soda Egg white, sea water	- 8	1 × 10 ⁻⁸	1 × 10 ⁻⁶	6
	Human blood, tears Milk	- 7	1 × 10 ⁻⁷	1 × 10 ⁻⁷	7
	Saliva Rain	- 6	1 × 10 ⁻⁶	1 × 10 ⁻⁸	8
	Black coffee	- 5	1 × 10 ⁻⁵	1 × 10 ⁻⁹	9
	Tomatoes	- 4	1 × 10 ⁻⁴	1 × 10 ⁻¹⁰	10
	Cola, vinegar	- 3	1 × 10 ⁻³	1 × 10 ⁻¹¹	11
	Lemon juice	- 2	1 × 10 ⁻²	1 × 10 ⁻¹²	12
	Gastric juice	- 1	1 × 10 ⁻¹	1 × 10 ⁻¹³	13
		- 0	1 × 10 ⁰	1 × 10 ⁻¹⁴	14

In most solutions [H⁺] is quite small.

For strong acids it is usually easy to convert [acid] \Box [H⁺]

Then:

 $\mathbf{pH} = -\mathbf{log}[\mathbf{H}^+]$

and:

 $pOH = -log[OH^-]$

29

The H⁺ Ion in Water

The $H^+_{(aq)}$ ion is simply a *proton* with no electrons. In water, the $H^+_{(aq)}$ form clusters.

The simplest cluster is $H_3O^+_{(aq)}$. (Called the *hydronium ion*)

Larger clusters are $H_5O_2^+$ and $H_9O_4^+$.

Generally we use $H^+_{(aq)}$ and $H_3O^+_{(aq)}$ interchangeably.

Brønsted-Lowry Acids and Bases All about the $H^+_{(aq)}$ ion.

Brønsted-Lowry acid donates H⁺

Brønsted-Lowry **base accepts** H^+ (Base does not need to contain $OH^-_{(aq)}$)

0

H

Consider $\operatorname{HCl}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(l)} \Box \operatorname{H}_3\operatorname{O}_{(aq)}^+ + \operatorname{Cl}_{(aq)}^-$:

HCl *donates a proton* to water. Therefore, HCl is an *acid* H_2O *accepts a proton* from HCl. Therefore, H_2O is a *base*

CI

Н

Ionic Product of Water

In pure water the following equilibrium is established

$H_2O(l) + H_2O(l) = H_3O^+(aq) + OH^-(aq)$

At 25° C (298K)

$$K_c = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

 $K_c [H_2O]^2 = [H_3O^+] [OH^-]$

 $K_w = [H_3O^+][OH^-] = 1.0 \ge 10^{-14}$

 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

Amphoteric Nature of Water *Amphoteric* substances can behave as acids and bases.

 Al_2O_3 is an example of an amphoteric substance:

Water can behave as either an acid or a base. Water is *amphoteric*.

The ionisation of water can be represented by:

$$H_2O_{(l)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$$

Conjugate Acid-Base Pairs

Whatever is left of the acid after the proton is donated is called its *conjugate base*.

$$\begin{array}{rcrcr} \mathrm{HCl}_{(aq)} &+ & \mathrm{H_2O}_{(l)} \rightleftharpoons & \mathrm{H_3O^+}_{(aq)} &+ & \mathrm{Cl^-}_{(aq)} \\ acid & & & conjugate \ base \end{array}$$

$$\begin{array}{rcrcr} H_2O_{(l)} &+& H_2O_{(l)} \rightleftharpoons & H_3O^+_{(aq)} &+& OH^-_{(aq)}\\ acid & & conjugate \ base \end{array}$$

Conjugate acid-base *pairs* differ by only one proton.

Conjugate Acid-Base Pairs

Similarly, whatever is left of the base after it accepts a proton is called its *conjugate acid*.

Conjugate acid-base *pairs* differ by only one proton.

Relative Strengths The stronger the acid, the weaker the conjugate base.

Stronger HClO₄ ClO_4^- Very weak bases. Weaker Strong acids. Negligible tendency acid HCl Clbase 100% dissociated $HSO_4^$ to be protonated in H_2SO_4 in aqueous aqueous solution. HNO₃ $NO_3^$ solution. H_3O^+ H_2O SO_4^{2-} HSO_4^- H₃PO₄ $H_2PO_4^-$ HNO₂ NO_2^- HF Weak acids. F^{-} Weak bases. CH₃CO₂H Exist in solution CH₃CO₂ Moderate tendency H_2CO_3 as a mixture of HCO₃⁻ to be protonated in aqueous solution. H_2S HS⁻⁻ HA, A^- , and H_3O^+ . NH_4^+ NH_3 HCN CN^{-} HCO₃⁻⁻ CO_{3}^{2-} OH- H_2O NH_3 Very weak acids NH_2^- Strong bases. Negligible tendency O^{2-} 100% protonated in OH^{-} Weaker Stronger to dissociate. aqueous solution. H^{-} H_2 acid base
Strong Acids

The strongest common acids are HCl, HBr, HI, HNO₃, HClO₃, HClO₄, and H₂SO₄.

All strong acids *ionise completely* in solution:

 $HNO_{3(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + NO_3^-_{(aq)}$

Since H^+ and H_3O^+ are used interchangeably, we write:

$$HNO_{3(aq)} \rightleftharpoons H^{+}_{(aq)} + NO_{3(aq)}^{-}$$

The strong acid is usually the only source of H⁺. (*If the molarity of the acid is less than 10⁻⁶ M then the ionisation of water needs to be taken into account.*)

Therefore, the *pH depends only on the initial molarity* of the acid.

Strong Bases

The strongest common bases are *oxides* and *hydroxides* of Group I metals.

All strong bases *ionise completely* in solution:

 $O^{2-}_{(aq)} + H_2O_{(l)} \rightleftharpoons 2OH^{-}_{(aq)}$

Bases do not need to include OH⁻ ions:

$$\begin{array}{rcrcrcr} \mathrm{H}^{-}{}_{(aq)} & + & \mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons & \mathrm{H}_{2(g)} & + & \mathrm{OH}^{-}{}_{(aq)} \\ \mathrm{N}^{3-}{}_{(aq)} & + & 3\mathrm{H}_{2}\mathrm{O}_{(l)} \rightleftharpoons & \mathrm{NH}_{3(aq)} & + & 3\mathrm{OH}^{-}{}_{(aq)} \end{array}$$

Therefore, the [OH⁻], and hence the [H⁺] and *pH*, *depends only on the initial molarity of the base*.

Weak Acids

Weak acids are only *partially ionised* in solution

Therefore, weak acids are in equilibrium:

$$HA_{(aq)} + H_2O_{(l)} \implies H_3O^+_{(aq)} + A^-_{(aq)}$$

$$HA_{(aq)} \implies H^+_{(aq)} + A^-_{(aq)}$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} \quad \text{or} \quad K_a = \frac{[H^+][A^-]}{[HA]}$$

 K_a is the **dissociation constant** for the weak acid

K_a of Weak Acids

SOME WEAK ACIDS IN WATER AT 25°C*

Acid	Molecular Formula	Structural Formula	Conjugate Base	Ка
Hydrofluoric	HF	H—F	F^{-}	$6.8 imes10^{-4}$
Nitrous	HNO ₂	H-O-N=O	NO ₂ ⁻	$4.5 imes10^{-4}$
Benzoic	HC7H5O2	H-o-C-	$C_7H_5O_2^-$	$6.5 imes 10^{-5}$
Acetic	HC ₂ H ₃ O ₂	он н—о—с—с—н н	$C_2H_3O_2^-$	$1.8 imes 10^{-5}$
Hypochlorous	HCIO	H—O—Cl	Cl0 ⁻	$3.0 imes 10^{-8}$
Hydrocyanic	HCN	H—C≡N	CN ⁻	4.9×10^{-10}
Phenol	HOC ₆ H ₅	H-O-	C ₆ H₅O [−]	$1.3 imes 10^{-10}$

* The proton that ionizes is shown in blue.

Amending K_a

$$K_a = \frac{[\mathbf{H}^+][\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]}$$

The expression for the dissociation constant can be altered as follows:

 $K_a = \frac{\left[\begin{array}{c} \mathbf{H}^+ \end{array} \right]^2}{\left[\begin{array}{c} \mathbf{H}\mathbf{A} \end{array} \right]}$

For every H⁺ ion produced an A⁻ ion must be produced:

 $[H^+] = [A^-]$

Let, C = analytical [HA]

 $K_a = \frac{\left[\mathbf{H}^+ \right]^2}{\mathbf{C}}$

If acid is weak, then *equilibrium* [HA] is only slightly less than *analytical* [HA]

C = [HA]

Using
$$K_a$$
 to Calculate pH
 $K_a = \frac{[H^+]^2}{C}$ Rearranging $[H^+] = (K_a.C)$

For example, calculate the pH of a 0.1 mol l^{-1} solution of ethanoic acid, given that K_a for ethanoic acid is 1.7 x 10⁻⁵.

$$[H^{+}] = \sqrt{(1.7 \times 10^{-5} \times 0.1)}$$
$$[H^{+}] = \sqrt{(1.7 \times 10^{-6})}$$
$$[H^{+}] = 1.304 \times 10^{-3} \text{ mol } l^{-1}$$

 $pH = -log[H^+]$ $pH = -log(1.304 x 10^{-3}) = 2.9$

pK_a Values

pH was invented to help simplify hydrogen ion concentrations, the large range of K_a values can similarly be simplified.

 $\mathbf{pK}_{\mathbf{a}} = -\log \mathbf{K}_{\mathbf{a}} \qquad \mathbf{K}_{\mathbf{a}} = \mathbf{10}^{-\mathrm{pKa}}$

nyuronuone acia	ПГ	~	11 † ľ	3·3 × 10	5.5
methanoic acid	НСООН	\	$H^+ + HCOO^-$	1.6×10^{-4}	3.8
benzoic acid	C ₆ H ₅ COOH	4	$H^+ + C_6 H_5 COO^-$	6.3×10^{-5}	4·2
ethanoic acid	CH ₃ COOH	4	$H^+ + CH_3COO^-$	1.7×10^{-5}	4.8
butanoic acid	CH ₃ (CH ₂) ₂ COOH	4	$\mathrm{H^{+}+CH_{3}(CH_{2})_{2}COO^{-}}$	1.5×10^{-5}	4.8
propanoic acid	CH ₃ CH ₂ COOH	4	$H^+ + CH_3CH_2COO^-$	1.3×10^{-5}	4.9
carbonic acid	H O + CO	÷	1 ⁺ + HCO [−]	4.5×10^{-7}	6.4

Using
$$pK_a$$
 Values to calculate
 $pK_a = -\log K_a$ $K_a = 10^{-pKa}$

The *pH* of a solution can be calculated from pK_a by converting to K_a and proceeding as before:

$$K_a = \frac{[\mathbf{H}^+]^2}{\mathbf{C}}$$
 Rearranging
gives: $[\mathbf{H}^+] = \begin{array}{c} (K_a \cdot C) \\ \mathbf{p}\mathbf{H} = -\log[\mathbf{H}^+] \end{array}$

If preferred, the pH of a solution can be calculated directly from pK_a

Calculating pH from pK_a

Taking logs of both sides

simplifying log! $A = \frac{1}{2}\log A$ simplifying logAB = logA + logB Multiply by -1

 $K_a = \frac{[H^+]^2}{C}$ Rearranging gives:

Substituting

$$[\mathbf{H}^+] = \downarrow (K_a \cdot C)$$

$$\log[\mathbf{H}^+] = \log(\{(K_a.C)\})$$

$$\log[\mathbf{H}^+] = \frac{1}{2} \log(K_a \cdot C)$$

 $\log[H^+] = \frac{1}{2} \log K_a + \frac{1}{2} \log C$

 $-\log[\mathbf{H}^{+}] = -\frac{1}{2}\log K_{a} - \frac{1}{2}\log C$ $\mathbf{pH} = \frac{1}{2}\mathbf{pK}_{a} - \frac{1}{2}\log C$

Diluting Strong Acids

From Standard grade you've been expected to know the effect on pH of diluting a *strong acid*

 $\mathbf{pH} = -\mathbf{log}[\mathbf{H}^+]$

- 0.1 mol l^{-1} HCl pH = log (0.1) pH = 1
- 0.01 mol l^{-1} HCl pH = log (0.01) pH = 2

Dilute a strong acid by a factor of 10 and the pH will change by 1 unit

Is it the same for a weak acid?

Diluting Weak Acids

This is an ideal application of our pKa formula.

 $pH = \frac{1}{2}pK_a - \frac{1}{2}logC$

0.1 mol l^{-1} pH = ${}^{1}_{/2}$ pK_a - ${}^{1}_{/2}$ log (0.1) pH = ${}^{1}_{/2}$ pK_a - 0.5

0.01 mol l^{-1} pH = $\frac{1}{2}$ pK_a - $\frac{1}{2}$ log (0.01) pH = $\frac{1}{2}$ pK_a - 1.0

Dilute a weak acid by a factor of 10 and the pH will change by 0.5 unit

Polyprotic Acids

Polyprotic acids have more than one ionisable proton.

The protons are removed in steps not all at once:

$H_2SO_3(aq) = H^+(aq) + HSO_3^-(aq)$ $K_{a1} = 1.7 \times 10^{-2}$ $HSO_3^-(aq) = H^+(aq) + SO_3^{-2}(aq)$ $K_{a2} = 6.4 \times 10^{-8}$

It is always easier to remove the first proton in a polyprotic acid than the second. Therefore, $K_{a1} > K_{a2} > K_{a3}$ etc.

Most $H^+(aq)$ at equilibrium usually comes from the first ionization (i.e. often only need to consider the K_{a1} equilibrium).

Polyprotic Acids

ACID-DISSOCIATION CONSTANTS OF SOME COMMON POLYPROTIC ACIDS

Name	Formula	K _{a1}	K_{a2}	K _{a3}
Ascorbic	$H_2C_6H_6O_6$	8.0×10 ⁻⁵	1.6×10^{-12}	
Carbonic	H ₂ CO ₃	4.3×10^{-7}	$5.6 imes 10^{-11}$	
Citric	$H_3C_6H_5O_7$	3.5×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Oxalic	$H_2C_2O_4$	$5.9 imes 10^{-2}$	$6.4 imes 10^{-5}$	
Phosphoric	H ₃ PO ₄	$7.5 imes 10^{-3}$	6.2×10^{-8}	4.2×10^{-13}
Sulfurous	H ₂ SO ₃	1.7×10^{-2}	$6.4 imes 10^{-8}$	
Sulfuric	H_2SO_4	Large	1.2×10^{-2}	
Tartaric	$H_2C_4H_4O_6$	1.0×10^{-3}	$4.6 imes 10^{-5}$	

Weak Bases

 $NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$

conjugate acid + $H_2O = base + H_3O^+$

Forced to deduce strength of base by looking at *acid dissociation constant*, *K*_a of its *conjugate acid*

Weak Bases

The *smaller K_a* the *stronger* the base.

propa.	CH_3CH_2COOH	4	$H = CH_3CH_2CUU^-$	1.3×10^{-3}	4.9
carbonic acid	$H_2O + CO_2$	\rightleftharpoons	$\mathrm{H^{+}} + \mathrm{HCO_{3}^{-}}$	4.5×10^{-7}	6.4
hydrogencarbonate ion	HCO ₃ ⁻	4	$H^{+} + CO_{3}^{2-}$	5.6×10^{-11}	10.3
hydrogen sulphide	H_2S	\rightleftharpoons	$H^+ + HS^-$	8.9×10^{-8}	7.1
hydrogensulphide ion	HS⁻	4	$H^{+} + S^{2-}$	1.1×10^{-12}	12.0
boric acid	H ₃ BO ₃	\rightleftharpoons	$\mathrm{H^{+}} + \mathrm{H_2BO_3^{-}}$	7.3×10^{-10}	9.1
ammonium ion	$\mathbf{NH_4^+}$	4	$H^+ + NH_3$	5.6×10^{-10}	9.3
hydrocyanic acid	HCN	4	$H^+ + CN^-$	4.9×10^{-10}	9.3
phenol	C ₆ H ₅ OH	4	$\mathrm{H^{+}} + \mathrm{C_{6}H_{5}O^{-}}$	1.28×10^{-10}	9.9

Equilibrium in Water

- Only a few water molecules dissociate (split up) into ions so equilibrium lies to the left.
- The concentration of H^+ and OH^- ions at $25^{\circ C}$ is 10^{-7} mol I^{-1} .
- In pure water:

$$[H^{+}] \times [OH^{-}] = (10^{-7}) \times (10^{-7})$$
$$= 10^{-14} \text{ mol}^2 \text{ l}^{-2}$$

 Due to this equilibrium, all solutions will contain some H⁺ and OH⁻ ions and it has been found that, in all solutions:

 $[H^+] \times [OH^-] = 10^{-14} \text{ mol}^2 \text{ I}^{-2}$

 Due to this equilibrium, all solutions will contain some H⁺ and OH⁻ ions and it has been found that, in all solutions:

$$[H^{+}] \times [OH^{-}] = 10^{-14} \text{ mol}^2 \text{ I}^{-2}$$

 This is known as the ionic product of water and can be used to calculate the [H⁺] and thus the pH of any solution.

As $[H^+][OH^-] = 10^{-14}$

then $[H^+] = \frac{10^{-14}}{[OH^-]}$ for any solution.

Relationship between $[H^+]$, $[OH^-]$ & pH

Concentration of H ⁺ _(aq) (mol l ⁻¹)	[H ⁺]	рН	[OH ⁻]	Concentration of OH ⁻ _(aq) (mol I ⁻¹)
10	1×10^{1}			
1	$1 \times 10^{\circ}$	<u> </u>	-	
0.1	1 × 10⁻¹			
0.01	1 × 10 ⁻²			
0.001	1 × 10 ⁻³			
0.000 1	1 × 10⁻⁴			
0.000 01	1 × 10⁻⁵			
0.000 001	1 × 10⁻⁰			
0.000 000 1	1 × 10 ⁻⁷			
	1 × 10 ⁻⁸			
	1 × 10 ⁻ °			
	1 × 10 ⁻¹⁰			
	1 × 10 ⁻¹¹			
	1×10^{-12}			
	1 × 10 ⁻¹³			
	1 × 10 ⁻¹⁴			
	1 × 10 ⁻¹⁵			

NB A change in pH of 1 unit represents a 10 fold change in concentration of $[H^+]$, $[OH^-]$ ions.

2 units = 100 fold change, etc

Strong and Weak Acids

 Acids are classified as either strong or weak depending on how they dissolve in water.

Strong Acids

Dissolve by completely dissociating into ions,
 E.g.

HCl + (aq) $H^{+}_{(aq)} + Cl^{-}_{(aq)}$ So if the HCl concentration is 0.1 mol l⁻¹ then [H⁺] is 0.1 mol l⁻¹.

 Examples include: Hydrochloric acid (HCl) Nitric acid (HNO₃) Sulphuric acid (H₂SO₄) Hydrofluoric acid (HF)

Weak Acids

• Do not completely dissociate into ions in solution,

- Ethanoic acid solutions contain molecules of CH_3COOH as well as H^+ and CH_3COO^- ions.
- Examples include: Ethanoic acid (CH₃COOH) Methanoic acid (HCOOH) Sulphurous acid (H₂SO₃) Carbonic acid (H₂CO₃)

Solvents for Acids

- The type of solvent affects acid properties:
 - E.g. HCl in non -polar solvents (e.g. CCl_4)

 no dissociation therefore only HCl molecules not ions so it is not an acid.

 To show acidic properties, a polar solvent, like water is required.

Strong and Weak Bases

• Again based on how they dissolve in water.

<u>Strong bases/alkalis</u>

- Dissolve by completely dissociating into ions.
 e.g.
 NaOH(s) + (aq) Ng⁺ (aq) + OH⁻ (aq)
- Examples include: Sodium hydroxide (NaOH) Potassium hydroxide (KOH) Lithium hydroxide (LiOH)

<u>Weak bases/alkalis</u>

- Do not completely dissociate into ions in solution,
 E.g. NH_{3 (ag)}+ H₂O (1) = NH₄⁺ (ag) + OH⁻ (ag)
- Ammonia solutions contain molecules of NH_3 as well as NH_4^+ and OH^- ions.
- Examples include: Ammonia (NH₃) Aminomethane (CH₃ NH₂) Aminoethane (C₂H₅ NH₂)

Properties of Strong and Weak Acids and Alkalis

- Equimolar solutions of strong and weak acids and alkalis differ in conductivity, pH and speed of reaction.
- This is due to the different concentrations of H⁺ and OH⁻ ions in solution.
- Strong acid vs weak acid
- Higher conductivity, lower pH, faster reaction
 ...due to higher H⁺ ion concentration.

Strong base/alkali vs weak base/alklai

Higher conductivity, higher pH
 ...due to higher OH⁻ ion concentration.

Neutralisation reactions of Acids and Alkalis: Titration

 If you titrate 25 ml of 1.0 mol l⁻¹ HCl against 1.0 mol l⁻¹ NaOH, what volume of NaOH would you need?

 What happens if you use 25ml of 1.0 mol l⁻¹ ethanoic acid instead?

Why?

 The stoichiometry of the reactions (the mole ratio of reactants) is the same in each case therefore the same volume of alkali is required for neutralisation.

Definition mix up!

Strong acid	Weak acid
Fully dissociated in aqueous solution	Not fully dissociated in aqueous solution

Dilute	Concentrated
A little solute in a lot of water.	A lot of solute in a little of
e.g. 0.2 mol I ⁻¹	water. e.g. 2.0 mol l ⁻¹

pH of Salts

• The pH of a salt solution depends on the strength of the acid and base from which it was formed.

Acid	Base	pH of salt
Strong	Weak	Acidic
Strong	Strong	Neutral
Weak	Strong	Alkaline

Examples

1. Reaction of sodium hydroxide with hydrochloric acid

2. Reaction of ethanoic acid with sodium hydroxide

3. Reaction of ammonia with nitric acid

Explanation of Salt pH

- All salts are **strong electrolytes** and completely ionise in solution.
- The ions of a **weak acid** or **base** when dissolved will set up an **equilibrium** the ions in water.

Example 2 - Alkaline Salt

•The ethanoate ions form an equilibrium with the H^+ ions moving the water equilibrium to the right.

•Excess OH⁻ ions are formed so the pH is greater than 7.

<u>Soaps</u>

Soap is a salt formed between a fatty acid (weak acid) and sodium or potassium hydroxide.
 e.g. sodium oleate (from oleic acid) sodium stearate (from stearic acid)

• • Soap solutions are alkaline.

<u>Summary of Salts</u>

- In all solutions of salts formed from weak acid or base ions:
 - an equilibrium is established
 - the balance of H^+ and OH^- ions in water is changed
 - water molecules split up to oppose this change
 - excess H^+ and OH^- ions then alter the pH
- This is sometimes called salt hydrolysis as the break up of water molecules is caused by the salt dissolving.

Buffer Solutions

A buffer consists of a mixture of a *weak acid* (HX) and its *conjugate base* (i.e. *salt*) (X⁻):

$$\mathrm{HX}(aq) \Longrightarrow \mathrm{H}^+(aq) + \mathrm{X}^-(aq)$$

The K_a expression is

$$K_a = \frac{[\mathbf{H}^+][\mathbf{X}^-]}{[\mathbf{H}\mathbf{X}]}.$$
$$\therefore [\mathbf{H}^+] = K_a \frac{[\mathbf{H}\mathbf{X}]}{[\mathbf{X}^-]}.$$

The pH of a buffer depends on the weak acid chosen (K_a) and the ratio of [HX] to [A⁻].

Buffer Solutions

In a solution of a weak acid alone, [HX] is *large* but [X⁻] is *small*.

The addition of the *salt* of the acid means that $[X^-]$ is also *large*.

This gives the Buffer the ability to maintain a **'constant' pH** even when:

an acid is added - more H^+ ions an alkali is added - more OH^- ions the buffer is diluted - more H_2O

Buffer Solutions - more H⁺

$$[H^+] = K_a \frac{[HX]}{[X^-]} \quad pH = pK_a - log\left(\frac{[HX]}{[X^-]}\right)$$

$$HX(aq) \Longrightarrow H^+(aq) + X^-(aq)$$

If a small amount of acid is added to a buffer the H^+ ions will react with X^- to form HX.

The $[X^{-}]$ was so high to begin with that the *decrease* is negligible The [HX] was so high to begin with that the *increase* is negligible The ratio of [HX] to $[X^{-}]$ remains unchanged so *pH stays the same* Buffer Solutions - more OF $[H^+] = K_a \frac{[HX]}{[X^-]} PH = pK_a - log \left(\frac{[HX]}{[X^-]}\right)$

$HX(aq) \Longrightarrow H^+(aq) + X^-(aq)$

If a small amount of alkali is added to a buffer the OH^- ions will react with H^+ to form H_2O .

HX molecules will dissociate to replace the H⁺ ions but [HX] was so high to begin with that the *decrease* is negligible

More X^- will be formed but the $[X^-]$ was so high to begin with that the *increase* is negligible

The ratio of [HX] to [X⁻] remains unchanged so *pH stays the same*
Buffer Solutions - more H₂C

$$[H^+] = K_a \frac{[HX]}{[X^-]} PH = pK_a - log \left(\frac{[HX]}{[X^-]}\right)$$

If water is added to a buffer the [HX] will *decrease* and the [X⁻] will *decrease*.

The decrease will be *the same* for both substances.

The ratio of [HX] to [X⁻] remains unchanged so *pH stays the same*

Buffer Solutions - calculating pH

$$\mathbf{pH} = \mathbf{pK}_a - \log\left(\frac{[\mathbf{HX}]}{[\mathbf{X}]}\right)$$

normally represented as:

$$\mathbf{pH} = \mathbf{pK}_a - \log\left(\frac{\mathbf{Acid}}{\mathbf{Salt}}\right)$$

and 'tidied up' to give:

$$\mathbf{pH} = \mathbf{pK}_a + \log\left(\frac{\mathbf{Salt}}{\mathbf{Acid}}\right)$$

Present at *high pH's*

Indicators - weak acids

Indicators are *weak acids* that change *colour* when they are converted into their *conjugate base*.

e.g Methyl Red

CH3

Indicators
$$K_{ln}$$

 $HIn_{(aq)} + H_2O_{(l)} \Longrightarrow H_3O^+_{(aq)} + In^-_{(aq)}$
The *dissociation constant* is relabelled as K_{ln} but is still:

 $K_{In} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{In}^{-}]}{[\mathbf{H}_{2}\mathbf{O}][\mathbf{HIn}]} \quad \text{which} \\ \text{simplifies} \quad K_{In} = \frac{[\mathbf{H}^{+}][\mathbf{In}^{-}]}{[\mathbf{HIn}]}$

Rearranging gives:

$$\frac{K_{In}}{[\mathbf{H}^+]} = \frac{[\mathbf{In}^-]}{[\mathbf{HIn}]}$$

The ratio of [In⁻]/[HIn] represents the *colour* that would be observed.

Since K_{In} is a constant, *the colour of an indicator depends on* [H⁺], i.e. pH

Indicators - pH ranges

Indicators - pK_{In}

For indicators, pK_{In} is more useful than K_{In} :

The midpoint of any indicators colour change is when [HIn] = [In⁻]

$$\frac{K_{In}}{[\mathbf{H}^+]} = \frac{[\mathbf{In}^-]}{[\mathbf{HIn}]}$$

so
$$\frac{K_{In}}{[\mathbf{H}^+]} = \mathbf{1}$$

 $K_{In} \equiv [\mathbf{H}^+] \mathbf{p} K_{In} \equiv \mathbf{p} \mathbf{H}$

In other words the pH at which an indicator is midway through its colour change can be calculated easily from K_{In}

and vice versa

the pK_a of an indicator is the same as the pH of its midpoint

Indicators - detecting end-point

For only *one particular colour* to be observed, that form must be *10 times more concentrated* than the other.

$$\frac{[\text{HIn}]}{[\text{In}]} = 10 \quad \text{or} \quad \frac{[\text{HIn}]}{[\text{In}]} = 0.1$$

Rearranging

$$K_{In} = \frac{[\mathbf{H}^+][\mathbf{In}^-]}{[\mathbf{HIn}]} \longrightarrow -\log[\mathbf{H}^+] = -\log\left(\frac{K_{In}}{[\mathbf{In}^-]}, \frac{[\mathbf{HIn}]}{[\mathbf{In}^-]}\right)$$
$$\mathbf{pH} = \mathbf{p}K_{In} \pm 1 \quad (\mathbf{pH} = \mathbf{p}K_{In} - \log\left(\frac{[\mathbf{HIn}]}{[\mathbf{In}^-]}\right) \quad (\mathbf{pH} = \mathbf{p}K_{In} - \log\left(\frac{[\mathbf{HIn}]}{[\mathbf{In}^-]}\right)$$

Equivalence point

The *equivalence point* is when the reaction is just completed

For a titration between a *strong acid* (e.g HCl) and a *strong base* (e.g NaOH) the *equivalence point* will be when pH = 7.

However, not all indicators will complete their colour change at this point so *end-point observed* may be different.

If titrating with a base, you should ideally choose an indicator that has a pK_{In} *less* than the pH at the equivalence point, i.e. $pK_{In} = 6$

At pH = 5 colour change starts By pH = 7 colour change *visible*

If titrating with an acid, you should ideally choose an indicator that has a pK_{In} *1 more* than the pH at the equivalence point.

Weak Acid / Strong Base

The equivalence point has moved to a higher pH ~ 8.5

$$\mathbf{pH} = \mathbf{p}K_{In} \pm \mathbf{1}$$

Use an indicator with a pK_{In} as close to 7.5 as possible.

Weak Acid / Strong Base

The weaker the acid, the higher the equivalence point

The change in pH becomes *less dramatic*.

Eventually, *no indicator will be suitable* as you need at least a change of 2 pH units.

Important Formulae

pH = -log[H⁺] $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

$$K_a = \frac{[\mathbf{H}^+][\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]} \qquad K_a = \frac{[\mathbf{H}^+]^2}{\mathbf{C}}$$

$$pH = \frac{1}{2}pK_a - \frac{1}{2}logC$$

$$\frac{K_{In}}{[H^+]} = \frac{[In^-]}{[HIn]} \qquad pH = pK_{In} \pm 1$$
$$pH = pK_a + \log\left(\frac{Salt}{Acid}\right)$$